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Abstract High accuracy face recognition is of great impor-

tance for a wide variety of real-world applications. Although

significant progress has been made in the last decades, fully

automatic face recognition systems have not yet approached

the goal of surpassing the human vision system, even in con-

trolled conditions. In this paper, we propose an approach for

robust face recognition by fusing two complementary fea-

tures: one is Gabor magnitude of multiple scales and ori-

entations and the other is Fourier phase encoded by spatial

pyramid based local phase quantization (SPLPQ). To reduce

the high dimensionality of both features, block-wise fisher

discriminant analysis (BFDA) is applied and further com-

bined by score-level fusion. Moreover, inspired by the bio-

logical cognitive mechanism, multiple face models are ex-

ploited to further boost the robustness of the proposed ap-

proach. We evaluate the proposed approach on three chal-

lenging databases, i.e., FRGC ver2.0, LFW, and CFW-p, that

address two face classification scenarios, i.e., verification and

identification. Experimental results consistently exhibit the

complementarity of the two features and the performance

boost gained by the multiple face models. The proposed ap-

proach achieved approximately 96% verification rate when

FAR was 0.1% on FRGC ver2.0 Exp.4, impressively surpass-

ing all the best known results.
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1 Introduction

Face recognition, as one of the most representative technolo-

gies of artificial intelligence, has attracted significant atten-

tion over the last decades in many domains including infor-

mation security, law enforcement, surveillance, and entertain-

ment [1]. Although numerous approaches [2–11] have been

proposed and tremendous progress has been made, it remains

a challenge for machines to recognize human faces efficiently

and accurately under uncontrolled conditions. The main chal-

lenges are in the small interpersonal differences caused by

similar facial configurations and the significant intrapersonal

variations caused by diverse extrinsic imaging factors such as

head pose, expression, aging, and illumination.

In general, a typical face recognition system consists of

three modules: face detection, face representation, and face

classification. In this paper, we focus mainly on the second

part, i.e., extracting the internal representation which is con-

sidered as the key to high accuracy face recognition. Numer-

ous local descriptors have been proposed for effective face

representation. One of the most successful local descriptors

is Gabor wavelet transform which is first proposed by Ga-

bor [12] aiming at analyzing signals, and then successfully

being extended to the problem of face recognition. Gabor
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wavelets, whose kernels are similar to the 2D receptive field

profiles of the mammalian cortical simple cells, exhibit de-

sirable characteristics of spatial locality and orientation se-

lectivity, and therefore achieve higher top-one recognition

accuracy [2]. However, the majority of the proposed Gabor-

related approaches (e.g., [2–4]) utilize only the magnitude in-

formation, and only a small number of approaches utilize the

phase information because of the sensitivity of phase to vary-

ing positions, which leads to severe problems when matching

two faces with a slight misalignment [5]. To investigate the

potential of phase information, Ojansivu and Heikkilä [13]

proposed a novel descriptor named local phase quantization

(LPQ) for texture classification by utilizing the Fourier phase

information computed locally in a window for each image

pixel. LPQ provides its robustness to image blurring and in-

sensitiveness to uniform illumination changes. Local binary

patterns (LBP) [14] is another powerful local descriptor; it

consumes less extraction time and has lower-dimensional

representation compared with Gabor wavelet transform. This

descriptor assigns a label to every pixel of an image by thresh-

olding the 3 × 3 neighborhood pixels with the center pixel

value and considering the result as a binary number (binary

pattern). Then, the histogram of the labels can be used as fea-

ture. Lowe [15] proposed an approach for extracting distinc-

tive invariant features from images that can be used to per-

form reliable matching among different views of an object or

scene, named scale invariant feature transform (SIFT). SIFT

features are invariant to image scale and rotation, and can pro-

vide robust matching across a substantial range of affine dis-

tortion, change in 3D viewpoint, illumination, and addition

of noise. Although SIFT is not originally designed for face

recognition, it exhibits excellent performance in face recog-

nition applications (e.g., [16–18]). As with SIFT, Histograms

of Oriented Gradients (HOG) [19] was originally devised for

human detection rather than face recognition. It is based on

evaluating well-normalized local histograms of image gradi-

ent orientations in a dense grid with the basic idea that local

object appearance and shape can often be characterized rather

well by the distribution of local intensity gradients or edge di-

rections, even without precise knowledge of the correspond-

ing gradient or edge positions. Several works (e.g., [20, 21])

have proven its successful extension to face recognition.

However, a single descriptor only encodes limited informa-

tion of the given face [6]; it is reasonable to combine different

descriptors for more effective face representation. Recently,

approaches fusing diverse descriptors have received consider-

able attention. Zhang et al. [3] proposed a non-statistics based

face representation approach, named local Gabor binary pat-

tern histogram sequence (LGBPHS). In this approach, an in-

put face image is first transformed to obtain multiple Gabor

magnitude pictures (GMPs), and then the GMPs are con-

verted to local Gabor binary pattern (LGBP) maps by the

LBP operator and further divided into non-overlapping re-

gions in which histograms are computed. Tan and Triggs [7]

proposed another effective approach by combining Gabor

and LBP features, then further applying kernel discrimina-

tive common vector method to nonlinearly extract discrimi-

nant feature. Inspired by the fact that human beings recognize

faces relying on both global and local facial features, a hier-

archical ensemble approach is proposed by Su et al. [4] to

simulate the observations in bionic sense by exploiting both

global and local features, where the global part is extracted

from the whole face image by using Fourier transform, and

the local part is extracted from some spatially divided face

patches by using Gabor wavelets. Further, from the basic idea

of integrating global and local information, Liu et al. [22]

proposed a fusion approach by combining Gabor wavelets,

multi-resolution LBP, and discrete cosine transform (DCT)

in a novel hybrid color space to boost face recognition per-

formance. Chan et al. [8] integrated multiscale LBP (MLBP)

and multiscale LPQ (MLPQ) in the form of multiple kernels

fusion based on the computationally efficient spectral regres-

sion kernel discriminant analysis (KDA) [9]. Recently, Deng

et al. [10] proposed a powerful system by emulating biologi-

cal strategies of human visual system, and the proposed sys-

tem integrates three parts: dual retinal texture and color fea-

tures for face representation, an incremental robust discrimi-

nant model for high-level face coding, and a hierarchical cue-

fusion method for similarity qualification. All the above fu-

sion strategies achieve improved performance compared with

single descriptor based approaches.

Intuitively, in fusing different features, the complementar-

ity among them has a key role. In recent years, the fusion

of magnitude and phase features in a frequency domain has

attracted considerable attention [5, 6]. In this paper, we at-

tempt to fuse magnitude feature extracted by Gabor wavelets

transform and phase feature which is locally quantized af-

ter Fourier transform. Specifically, we first extract the Gabor

magnitude and Fourier phase features from a normalized face

image by using Gabor wavelets transform and spatial pyra-

mid based local phase quantization (SPLPQ), respectively.

Then, to reduce the high dimensionality of both features and

increase the discriminative capability, block-wise fisher dis-

criminant analysis (BFDA) is applied to extract the discrim-

inative low-dimensional features. The BFDA method mainly

follows the previous work in [4] and [23], which divides the
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entire feature set into numerous feature segments and applies

fisher discriminant analysis (FDA) on each of them. Finally,

score-level fusion is performed to calculate the final similar-

ity. Inspired by the biological cognitive mechanism that the

processing performed by the human visual system to judge

identity is better characterized as “head recognition” rather

than “face recognition” [24–26], we conduct the final fusion

of two features in a multiple face models framework. Specif-

ically, three face models in a “zooming” order, i.e., internal,

transitional, and external face models, which have the same

size and different eye positions are utilized in this paper.

To demonstrate the strength of the proposed approach, we
evaluate it on three different large-scale face databases, i.e.,
Face Recognition Grand Challenge (FRGC) version 2.0 [27]
following its standard Exp.4 evaluation protocol, Labeled
Faces in the Wild (LFW) [28], and purified Celebrity Faces
on the Web (CFW-p) [29] which contains more than 150,000
images of 1,520 subjects. These three databases address two
different classification scenarios, i.e., face verification and
face identification, and experimental results on them consis-

tently exhibit the complementarity of the two features and the
performance boost gained by the multiple face models.

The main contributions of this paper include the follow-
ing: 1) We demonstrate that the fusion of Gabor magnitude
and locally quantized Fourier phase provides a complemen-
tary description for robust face recognition; 2) We inves-
tigate the significant role of multiple face models for sys-
tem performance boosting, and offer a guiding suggestion on
how to select appropriate face models; 3) The proposed ap-
proach achieves the state-of-the-art result on FRGC ver2.0,
i.e., approximately 96% verification rate on Exp.4, in other
words, the error rate is reduced by approximately 30% com-
pared with the best known results; 4) We present a large-scale
benchmark, i.e., CFW-p, on the basis of CFW along with
ground truth identity labels and facial landmarks annotated
manually, and then further design a challenging face identifi-

cation protocol for future research.
The rest of this paper is organized as follows. Section 2

describes the extraction methods of magnitude and phase fea-
tures, i.e., Gabor magnitude and Spatial Pyramid based Lo-
cal Phase Quantization (SPLPQ). In Section 3, multiple face
models and the construction of final fusion system are pre-
sented. In Section 4, experiments and analyses are conducted,
followed by conclusion and discussion in the last section.

2 Extraction of magnitude and phase features
for face representation

It has been verified in previous works [5, 6] that magnitude

and phase features in a frequency domain have different yet

complementary roles in face perception. More specifically, in

the frequency domain, magnitude features always capture the

facial structure, whereas phase features can provide a detailed

description of the facial texture. Therefore, it is desirable to

combine these intelligently. In this paper, we investigate the

fusion of two powerful features, i.e., classical Gabor wavelets

transform for magnitude feature extraction and SPLPQ for

phase feature extraction. In this section, we will first describe

the two feature extraction methods in Sections 1 and 2 re-

spectively, and then we demonstrate how to use the Block-

wise Fisher Discriminant Analysis (BFDA) to further reduce

the high dimensionality of both features in Section 3.

2.1 Magnitude feature extraction by Gabor wavelets trans-

form

Since the pioneering work of Lades et al. [30], local face de-

scriptor based on Gabor wavelets transform has been widely

used in face recognition and in recent years proven to be

one of the most successful face representations (e.g., [2–5],

and [31]). This is mainly due to the fact that Gabor wavelets

can well approximate the receptive fields of simple cells in

the primary visual cortex of human vision system. The Gabor

wavelets are always defined in the form of Gabor kernels [2],

given by

ϕu,v(z) =

∥
∥
∥ku,v

∥
∥
∥

2

σ2
e(−‖ku,v‖2‖z‖2/2σ2)[eiku,vz − e−σ

2/2]. (1)

Here, ϕu,v(·) is the Gabor kernel with orientation u and scale

v, z denotes the pixel coordinate, i.e., z = (x, y), ‖·‖ denotes

the norm operator, and the wave vector ku,v is defined as fol-

lows:

ku,v = kveiφu , (2)

where kv = kmax/ f v and φu = πu/8, kmax is the maximum fre-

quency, and f is the spacing between kernels in the frequency

domain.

As can be observed from the definition, a Gabor wavelet

consists of a planar sinusoid multiplied by a 2-D Gaussian.

The Gaussian insures that the convolution is dominated by

the region of the image close to the center of the wavelet.

That is, when a signal is convolved with a Gabor wavelet,

the frequency information near the center of the Gaussian is

encoded, whereas the frequency information distant from the

center of the Gaussian has a negligible effect. Gabor wavelets

can assume a variety of forms with different scales and ori-

entations. Figure 1 displays the real and imaginary parts of

40 Gabor wavelets with five scales and eight orientations.
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Clearly, Gabor wavelets with a certain orientation respond to

edges and bars along this direction, and Gabor wavelets with

a certain scale extract the information in the corresponding

frequency band. Thus, Gabor wavelets can extract a consider-

ably detailed structure of important facial areas such as eyes,

nose, and mouth, which are useful for face representation.

Fig. 1 Visualization of Gabor wavelets. (a) Real and (b) imaginary parts of
the Gabor kernels at five scales (i.e., v ∈ {1, 2, . . . , 5}) and eight orientations
(i.e., u ∈ {0, 2, . . . , 7}) with the following parameters: σ = 2π, kmax = π, and
f =

√
2. Evidently, the Gabor wavelets exhibit desirable characteristics of

spatial frequency, spatial locality, and orientation selectivity

Given the above defined Gabor wavelets, Gabor features

are then extracted by convolving them with sub-windows

sliding the face image pixel by pixel, given by

Gu,v(z) = I(z) ∗ ϕu,v(z). (3)

Here, I(z) denotes the input face image, and ∗ denotes the

convolution operator. For each Gabor kernel, at every pixel

of the face image, a complex number can be generated which

contains two Gabor parts (i.e., real part Reu,v(z) and imagi-

nary part Imu,v(z)). Based on these two parts, magnitude value

Mu,v(z) can be computed by

Mu,v(z) =
√

Re2
u,v(z) + Im2

u,v(z). (4)

Figure 2 shows the Gabor magnitude feature of a sample face

image extracted by convolving the Gabor kernels illustrated

in Fig. 1 with size 31×31 sub-window sliding the face image

pixel by pixel. Now we finish the magnitude feature extrac-

tion via Gabor wavelets transform, and next we are going to

discuss how to model the face image by utilizing the phase

information in the frequency domain.

2.2 Phase feature extraction by SPLPQ

Local phase quantization (LPQ) is a novel descriptor pro-

posed by Ojansivu et al. [13] which is originally devised

for texture classification with its excellent properties, i.e.,

robustness to image blurring and insensitiveness to uniform

illumination changes (the design of Gabor wavelets trans-

form cannot ensure such properties). Considering this, LPQ

is a complimentary feature with the Gabor magnitude fea-

ture discussed in Section 1. In addition, to integrate the scale-

invariant property, we further extend the basic LPQ to Spatial

Pyramid based LPQ (SPLPQ).

Fig. 2 Gabor magnitude feature of a sample face image extracted by con-
volving the Gabor kernels illustrated in Fig. 1 with size 31× 31 sub-window
sliding the face image pixel by pixel

2.2.1 Local phase quantization

LPQ utilizes the phase information locally extracted using the

short term Fourier transform (STFT) computed over a square

M × M neighborhood Nx at each pixel position x of the face

image f (x) [13] defined by

F(u, x) =
∑

y∈Nx

f (x − y)e− j2πuTy = wT
u fx, (5)

where fx is a vector containing all the M2 gray-scale values

from Nx, wu is the basis vector of the STFT at frequency u.

As suggested in [13], only four complex coefficients are se-

lected in LPQ, corresponding to 2-D frequencies u1 = [a, 0]T,

u2 = [0, a]T, u3 = [a, a]T, and u4 = [a,−a]T. Let

Fc
x = [F(u1, x), F(u2, x), F(u3, x), F(u4, x)], (6)

and

Fx = [Re{Fc
x}, Im{Fc

x}]T, (7)

where Re{·} and Im{·} are real and imaginary parts of a com-

plex number, respectively. So, the corresponding 8×M2 trans-

formation matrix is

W = [Re{wu1 ,wu2 ,wu3 ,wu4 }, Im{wu1 ,wu2 ,wu3 ,wu4 }]T, (8)

so that

Fx = W fx. (9)

Assuming that f (x) is a result of a first-order Markov pro-

cess, where the correlation coefficient between adjacent pixel

gray-scale values and the variance of each sample are ρ and
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σ2, respectively (assuming σ2 = 1 without a loss of general-

ity). Then, the covariance between positions xi and x j can be

expressed by

σi j = ρ
‖xi−x j‖L2 . (10)

Hence, the covariance matrix of all the M samples in Nx can

be expressed by

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 σ12 · · · σ1M

σ21 1 · · · σ2M

...
...

...

σM1 σM2 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (11)

As a result, the covariance matrix of Fx can be obtained from

D = WCWT. (12)

We can easily notice that the coefficients are correlating,

as D is not a diagonal matrix when ρ > 0. The coefficients

should be de-correlated using a whitening transform before

quantization, because it can be demonstrated that if the sam-

ples to be quantized are statistically independent, information

can be maximally preserved in scalar quantization. Whiten-

ing transform can be expressed by

Gx = VTFx, (13)

where V is an orthonormal matrix derived from the singular

value decomposition of matrix D. Gx is computed for each

image position, and the resulting vectors are quantized by a

simple scalar quantizer

q j =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1, if g j � 0;

0, otherwise,
(14)

where g j is the jth component of Gx. Eventually, the quan-

tized coefficients can be represented as integer values from

zero to 255 using binary coding as in LBP [14]

b =
8∑

j=1

q j2 j−1. (15)

Figure 3 shows the extracted LPQ features of several sample

face images.

2.2.2 Spatial pyramid based local phase quantization

In this section, we extend basic LPQ in a spatial pyra-

mid matching (SPM) [32] framework, and the final descrip-

tor is called spatial pyramid based local phase quantization

(SPLPQ) which has superior performance compared with the

basic LPQ.

SPM was first explored by Grauman and Darrell [33] to

determine an approximate correspondence between two fea-

ture sets and then extended by Lazebnik et al. [32] to ap-

ply to the problem of natural scene category recognition. To

some extent, SPM shares a similar idea with multi-resolution

histograms [34], which involves sub-sampling an image re-

peatedly and computing a global histogram of pixel values at

each new layer. In other words, multi-resolution histograms

work in a way that the image has varying resolutions at which

the features are computed, but the histogram resolution stays

fixed. Conversely, SPM assumes the opposite approach by

repeatedly subdividing the image and computing histograms

of local features at increasingly fine resolutions (e.g., Fig.

4 shows a toy example of constructing a three-layer spatial

pyramid). This results in a higher-dimensional representation

that preserves more information [32].

Fig. 3 LPQ features of some sample face images (The LPQ features are ex-
tracted with the following parameters: M = 7, a = 1/7, σ2 = 1, and ρ = 0.9
which are suggested in [13]) (a) The input face images; (b) the corresponding
LPQ features

2.3 Block-wise fisher discriminant analysis and similarity

computation

Up to now, we have introduced the extraction methods of

the two complimentary features, i.e., Gabor magnitude fea-

ture and SPLPQ phase feature. However, it is not reason-

able to concatenate them to a single long vector, because by

doing that the locality information will not be utilized com-

pletely [4]. To overcome this potential weakness, two features

are respectively divided into a number of feature vectors cor-

respond to spatially blocks, i.e., block-wise representation,

by doing this more locality information can be preserved.

Here each block corresponds to a local area of the face im-

age and is of relatively lower dimensionality which means

less computing cost for the subsequent processing. In addi-

tion, compared with holistic representation, this block-wise

representation is more robust to illumination variation. The

reason is that the illumination variation within the whole face

image is much greater than that within each block. To further

reduce the dimensionality of the block-wise features, Block-
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wise fisher discriminant analysis (BFDA) [4, 23] is applied.

Then, the similarities from different local FDA will be fused

in the score level.

Fig. 4 A toy example of constructing a three-layer spatial pyramid (As-
sume that the image has three feature types, indicated by circles, triangles
and diamonds. First, the image is divided into blocks at three different grid-
ding resolutions. Next, for each layer and each block, we count the features
that fall in it in the form of histogram. Finally, all the histograms of the three
layers are fused in score level)

BFDA is an extended application of fisher discriminant

analysis (FDA) [35] on image blocks. FDA is a linear sub-

space dimensionality reduction method which tries to shape

the scatter in order to make it more reliable for high accu-

racy classification. This method learns the projection matrix

in such a way that the ratio of the between-class scatter and

within-class scatter is maximized. Let the between-class scat-

ter matrix be defined as

SB =

C∑

i=1

Ni(μi − μ)(μi − μ)T, (16)

where C is the number of classes, Ni is the number of sam-

ples in the ith class, μi is the mean representation of the ith

class, and μ is the mean representation of all the samples. The

within-class scatter matrix can be defined as

SW =

C∑

i=1

∑

fk∈Fi

( fk − μi)( fk − μi)T, (17)

where Fi is the sample set of the ith class, and fk is the kth

sample in a specific class. If SW is nonsingular, the optimal

projection matrix Wopt is chosen as the matrix with orthonor-

mal columns which maximizes the ratio of the determinant

of the between-class scatter matrix of the projected samples

to the determinant of the within-class scatter matrix of the

projected samples, i.e.,

Wopt = arg max
W

|WTSBW |
|WTSWW | = [w1 w2 · · · wm], (18)

where {wi|i = 1, 2, . . . ,m} is the set of generalized eigenvec-

tors of SB and SW corresponding to the m largest generalized

eigenvalues {λi|i = 1, 2, . . . ,m}, i.e.,

SBwi = λiSWwi, i = 1, 2, . . . ,m. (19)

Note that there are at most C − 1 nonzero generalized eigen-

values, and so an upper bound on m is C − 1. Now we can

reduce the dimensionality of input feature vector f by pro-

jecting with WT
opt as follows:

̂f = WT
opt · f , (20)

where ̂f is the feature after FDA which has lower dimension-

ality.

However, in practical face recognition problem, the within-

class scatter matrix SW is always singular. In order to over-

come the complication of such SW , we first use principal com-

ponent analysis (PCA) to reduce the dimensionality of the

input feature to a relatively small value and then apply the

FDA.

Next we will show how to use BFDA respectively to the

above two features, see Figs. 5 and 6 for more intuitive un-

derstanding.

Fig. 5 Illustration of applying BFDA for Gabor magnitude feature

Fig. 6 Illustration of applying BFDA for SPLPQ phase feature

For Gabor magnitude feature, we first convolve the input

face image with Gabor kernels of multiple scales and multi-

ple orientations defined in Eq. (1). After the convolution and

magnitude value computing, we can get a series of resulting

images called Gabor magnitude maps (GMMs), and then we

divide each GMM into N non-overlapping blocks. Let us de-

note

Gi = [Gi
u0,v0
, . . . ,Gi

u0,vs−1
,Gi

u1,v0
, . . . ,Gi

uo−1,vs−1
], (21)

as the concatenated Gabor magnitude feature of the ith block

of a specific face image, where Gk
u,v is a vector containing all

the magnitude values from the kth block of GMM with scale
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v and orientation u. Then the similarity between face A and

face B with Gabor magnitude feature can be defined as

SAB_Gabor =

N∑

i=1

wi · sim(ĜA_i, ĜB_i)

=

N∑

i=1

wi · ĜA_i · ĜB_i

‖ĜA_i‖ · ‖ĜB_i‖
, (22)

where ĜA_i and ĜB_i represent the features after dimensional-

ity reduction by FDA of the ith block of face A and face B, wi

is the weight of the ith block (in practice, we set equal weight

for each block).

For the SPLPQ phase feature, we divide each spatial

pyramid layer into different appointed numbers of non-

overlapping blocks, and each block is further divided into

corresponding number of fixed size sub-blocks. So we can

denote

Hli = [H1
li,H

2
li, . . . ,H

K
li ], (23)

as the original concatenated histogram feature of the ith block

in the lth layer, where K is the number of sub-blocks on which

tuple histograms are computed. In other words, each Hli is

generated by concatenating K histograms computed on sub-

blocks belong to the ith block in the lth layer. Each Hk
li has the

dimensionality of 256, so the dimensionality of Hli is 256×K.

Like Gabor magnitude feature, we further denote Ĥli as the

feature after FDA, which has lower dimensionality. Now we

can define the similarity of face A and face B with SPLPQ

phase feature as:

SAB_S PLPQ =

L∑

l=1

Nl∑

i=1

wli · sim(ĤA_li, ĤB_li)

=

L∑

l=1

Nl∑

i=1

wli · ĤA_li · ĤB_li

‖ĤA_li‖ · ‖ĤB_li‖
, (24)

where L is the number of spatial pyramid layers, Nl denotes

the number of blocks in the lth layer, and wli is the weight of

the ith block in the lth layer (in practice, we set equal weight

for each layer and equal sub-weight for each block). After

having the similarities computed based on Gabor magnitude

feature and SPLPQ phase feature, we can fuse them in score

level as Eq. (25).

SAB = w · SAB_Gabor + (1 − w) · SAB_S PLPQ, (25)

where SAB is the similarity of face A and face B, w is the

weight to balance the roles of two complimentary features

(without a loss of generality, here we again take the equal

weights).

3 Feature fusion in multiple face models
framework

In this section we will introduce another helpful technique,

i.e., multiple face models, which is designed inspired by a

biological cognitive mechanism to further boost the system

performance, after that we will give the final fusion approach

in the multiple face models framework.

3.1 Multiple face models

Sinha et al. [24–26] pointed out that the human vision sys-

tem’s processing to judge one’s identity is better character-

ized as “head recognition” rather than “face recognition”.

Figure 7 shows three sample subjects from FRGC ver2.0 and

their different types of face models in a “zooming” order from

left to right. Apparently, it is difficult for some people to de-

terminate whether two faces are of the same subject based

only on the internal images, i.e., images in the second col-

umn of Fig. 7. However, one can recognize a face more eas-

ily if given the external image, i.e., images in the rightmost

column of Fig. 7. Behind this interesting biological cogni-

tive phenomenon, the rationality is that human tend to rely

on the contextual information to recognize faces, such as hair

style, head contour, jaw and even background [36]. This trend

will be enhanced especially when intrinsic information is de-

graded [10]. Thus, it is smart to add the multiple face models

which contain not only intrinsic but also holistic contextual

information to the current system. With the above analysis, in

the proposed approach, three normalized face models of the

same size but different eyes’ positions are taken into account

to best imitate human vision system, and we call them inter-

nal face, transitional face and external face shown in Fig. 8.

As can be seen, the internal face model contains only the in-

ternal facial organs, such as eyes, mouth, nose and eyebrows

which are affected only by the factors related to identity. On

the contrary, the external face model is portrait-like and con-

tains some external facial elements such as jaw, head contour

and hair. The transitional face image can be regarded as the

transition state from the internal face model to the external

face model. To sum up, the internal face has the highest fa-

cial resolution but the minimum inner facial region, whereas

the external face contains larger facial region but relatively

low facial resolution.

3.2 Construction of final fusion system

Based on the two features, i.e., Gabor magnitude feature and



1180 Front. Comput. Sci., 2018, 12(6): 1173–1191

Fig. 7 Three sample subjects from FRGC ver2.0 and their different types of face models, where the leftmost column shows the original images,
and the second to the rightmost columns correspond to 12 different face models with the same size but different eyes’ positions (The size of all
the face models is fixed to 120×96, and the eyes’ coordinates are: {(20,36), (75,36)}, {(21,37), (74,37)}, {(22,38), (73,38)}, {(23,40), (72,40)},
{(24,42), (71,42)}, {(25,44), (70,44)}, {(26,46), (69,46)}, {(27,48), (68,48)}, {(28,50), (67,50)}, {(29,52), (66,52)}, {(30,54), (65,54)}, and
{(31,55), (64,55)} from model 1 to model 12)

SPLPQ phase feature, and three face models, i.e., internal

face, transitional face, and external face, in this subsection

we define the final similarity which is the integration of the

two features and the three face models. More specially, with a

coming image, we first generate the above three face models,

and then we extract the two features on each of them. There-

fore we will have six similarities, then a simple weighted

summation strategy is applied to integrate them to the final

similarity defined as

SAB = w1 · SAB_Gabor_I + w2 · SAB_S PLPQ_I +

w3 · SAB_Gabor_T + w4 · SAB_S PLPQ_T +

w5 · SAB_Gabor_E + w6 · SAB_S PLPQ_E . (26)

We take one of the elements as an example to explain, e.g.,

SAB_Gabor_I denotes the similarity of face A and face B com-

puted with Gabor magnitude feature on the internal face

model, and {wi|i = 1, 2, . . . , 6} denotes the weight for each

similarity (without a loss of generality, we take the equal

weights here). Figure 8 shows the whole proposed approach

as a summary.

4 Experiment and analysis

In this section, we evaluate the proposed approach on three

quite different large-scale face databases, i.e., face recogni-

tion grand challenge (FRGC) version 2.0 [27], labeled faces

in the wild (LFW) [28], and purified celebrity faces on the

Web (CFW-p) [29]. Moreover, these three databases cover

two different classification scenarios, i.e., face verification on

FRGC ver2.0 and LFW, and face identification on CFW-p.

Fig. 8 The proposed approach which fuses magnitude and phase features with multiple face models, where the Gabor magnitude feature part
is represented by light blue, and the SPLPQ phase feature part is represented by dark red
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4.1 Evaluation of proposed approach on FRGC v2.0 Exp.4

4.1.1 Database and experimental setup

Face recognition grand challenge (FRGC) version 2.0 [27]

is a large-scale face recognition evaluation benchmark spon-

sored by the United States government and collected at the

University of Notre Dame. This face database is designed to

achieve the goal that reducing the error rate of face recogni-

tion systems by an order of magnitude. With the above goal,

it presents six challenging experiments along with data cor-

pus of 50,000 recordings divided into training and validation

partitions to researchers. The database consists of high res-

olution still images taken under controlled and uncontrolled

conditions. The controlled images taken in a studio setting

(two or three studio lights) are full frontal facial images with

two facial expressions, i.e., neutral and smiling. The uncon-

trolled images are taken in varying lighting conditions, e.g.,

atria, hallways, or outdoors. Each set of uncontrolled images

also contains two expressions, i.e., neutral and smiling. Fig-

ure 9 shows some examples of FRGC ver2.0.

Fig. 9 Example images of three subjects from FRGC ver2.0 Exp.4 (The
left two columns show the controlled target images with neutral and smiling
expressions, and the other four columns show uncontrolled query images of
corresponding subjects with variations caused by expression, out of focus
blur, unsymmetrical illumination and large time lapse)

As recognizing faces under uncontrolled conditions, which

is considered the security requirement for real-world biomet-

ric recognition, has numerous applications and is one of the

most challenging problems in the field of face recognition, we

choose Exp.4 to evaluate the proposed approach. In Exp.4,

training set consists of 12,776 images of 222 subjects, with

6,388 controlled still images and 6,388 uncontrolled still im-

ages. The target set consists of 16,028 controlled still images,

and the query set consists of 8,014 uncontrolled still images.

Participating algorithms therefore produce a 16, 028 × 8, 014

matrix of similarity scores for all possible pairs, i.e., about

128 million pairs of faces.

When testing, the verification performance is reported in

the form of receiver operating characteristic (ROC) which

indicates the performance level for all possible combina-

tions of correct verification rate (VR) and false acceptance

rate (FAR). In particular, the official recommends three ROC

curves: ROC I, ROC II, and ROC III, correspond to image

pairs collected within semester, within year, and between

semesters, respectively. In this paper, the tested approaches

are typically compared in terms of the VR at a fixed FAR of

0.1%, which is considered the security requirement for real-

world biometric applications.

4.1.2 Technical details

In this work, we used three face models as mentioned in Sec-

tion 1, i.e., internal, transitional and external face models with

eyes located at {(20,47), (75,47)}, {(26,47), (69,47)}, and

{(29,51), (66,51)}, respectively. The size of above three face

models are fixed to 120 × 96. Moreover, before extracting

features, PP [37] which has been proven a robust illumina-

tion normalization method is used to eliminate illumination

effects.

In the Gabor magnitude feature extraction process, 40 Ga-

bor wavelets with 5 scales (i.e., v ∈ {1, 2, . . . , 5}) and 8 ori-

entations (i.e., u ∈ {0, 1, . . . , 7}) are utilized, where the Ga-

bor kernel’s size, the maximum frequency kmax, the spacing

between kernels in the frequency domain f and the parame-

ter σ are set to 31 × 31, π,
√

2 and 2π, respectively. 40 Ga-

bor magnitude maps are generated after the convolution with

the above Gabor wavelets, after that we use a 4 × 4 down

sampling to preliminarily reduce the huge dimensionality of

the original Gabor magnitude feature. As mentioned in Sec-

tion 3, the proposed approach is based on blocks, so we di-

vide each down sampled GMM into 18 blocks (6 rows × 3

columns), and concatenate the features of the same block into

a single vector which followed by FDA to generate lower-

dimensional discriminative feature.

In the SPLPQ phase feature extraction process, the correla-

tion coefficient ρ, the sliding window’s size and the frequency

parameter a are set to 0.9, 7 × 7 and 1/7, respectively. For

the spatial pyramid, we use a three-layer structure which has

3 × 2, 3 × 6, and 5 × 4 blocks (rows × columns) in the 0th,

1st, and 2nd layer, respectively. The sub-block in which we

extract histogram has the size of 8×8. Like Gabor magnitude

feature, FDA is used to generate lower-dimensional discrim-

inative feature for each block of SPLPQ.

In the dimensionality reduction process, we set the PCA

dimensionality to 600 and FDA dimensionality to 221, i.e.,

one less than the subject amount (222 subjects) of the train-

ing set, for all the blocks of both features. Without a loss of
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generality, in the similarity fusion process, all the weights are

set to be equal as mentioned in Sections 2 and 3. To further

validate the generality of the proposed approach, we fix the

parameters’ values for all the two test databases.

4.1.3 Multiple face models selection

Figure 7 shows 12 different face models, from left to right

each contains more contextual information and has lower fa-

cial resolution. In this part, we elaborate how to select the

three face models from the 12 shown in Fig. 7. It is obvi-

ous that the neighboring two face models have little appear-

ance difference but large redundancy. However, appearance

complementarity is an essential criterion that should be taken

into consideration. More specifically, it is better to make the

selected face models to have very different scopes of visual

facial region and facial resolutions. For this, we group the

12 face models into three sets, i.e., the first set contains the

internal face model candidates (from the 1st face model to

the 4th face model), the second set contains the transitional

face model candidates (from the 5th face model to the 8th

face model), and the third set contains the rest face models

as candidates of the external face model. More specifically,

we list the performance of individual face model in the left

part of Table 1. Obviously, combinations within set (i.e., in-

ternal, transitional, and external) achieve very limited perfor-

mance improvement, because components in the combination

are too similar to complement with each other. To maximize

the complementarity between three face models, we use the

strategy of selecting one face model from each of the three

sets. Then we evaluate all the 64 (4 × 4 × 4) possible com-

binations, and get the expected result that the combination of

the 1st, 7th and 12th face models achieves almost the best

result among all the combinations (for space limitation, we

only show the best one among the 64 candidate combina-

tions). This is mainly because in this way the gap between

the selected face models is maximized, and this point further

ensures the complementarity.

4.1.4 Comparison between LPQ and SPLPQ

This part mainly evaluates the performance of SPLPQ which

is an extension of LPQ in the form of spatial pyramid struc-

ture. The comparison between LPQ and SPLPQ is shown in

Table 2. We decompose the proposed three-layer SPLPQ into

three single layers and compare them with SPLPQ. As ex-

pected, SPLPQ outperforms single layer LPQ on three dif-

ferent ROC settings. This mainly attributes to the more in-

formation preserved by the spatial pyramid structure, e.g.,

small size block can only characterize local single facial or-

gan (e.g., mouth, nose), whereas larger size block may cap-

ture the correspondence between several important facial or-

gans (say, correspondence between mouth and nose).

Table 1 Evaluation of 12 different face models and their combinations on
FRGC ver2.0 Exp.4 with two features, i.e., Gabor and SPLPQ

Sing. Gabor SPLPQ Comb. Gabor SPLPQ

1 0.9214 0.8553 1,2,3 0.9201 0.8603

2 0.9193 0.8611 1,2,4 0.9255 0.8592

3 0.9221 0.8594 1,3,4 0.9279 0.8661

4 0.9187 0.8686 2,3,4 0.9242 0.8714

5 0.9267 0.8702 5,6,7 0.9297 0.8905

6 0.9232 0.8755 5,6,8 0.9317 0.8933

7 0.9248 0.8818 5,7,8 0.9336 0.8896

8 0.9233 0.8776 6,7,8 0.9305 0.8885

9 0.9188 0.8671 9,10,11 0.9183 0.8702

10 0.9093 0.8599 9,10,12 0.9227 0.8697

11 0.9069 0.8483 9,11,12 0.9209 0.8651

12 0.8989 0.8400 10,11,12 0.9175 0.8689

- - - - - - - - - - - - 1,7,12 0.9554 0.9350

Note: For space limitation, the performance reported here are under the ROC
I protocol corresponding to image pairs collected within semester

Table 2 Comparison between LPQ and SPLPQ on FRGC ver2.0 Exp.4.
ROC I, ROC II and ROC III, corresponding to image pairs collected within
semester, within year, and between semesters, respectively

Approach ROC I ROC II ROC III

Layer0:LPQ(3 × 2 blocks) 0.8473 0.8395 0.8296

Layer1:LPQ(3 × 6 blocks) 0.8392 0.8248 0.8079

Layer2:LPQ(5 × 4 blocks) 0.8318 0.8174 0.8008

Three-layer SPLPQ 0.8818 0.8704 0.8572

4.1.5 Evaluation of feature fusion

To validate the merits of the fusion of Gabor magnitude fea-

ture and SPLPQ phase feature, we compare the performance

between fused approach and non-fused approach which uti-

lizes only one of the two features. We conduct the experi-

ments on the three face models separately, the experimental

results can be found in Table 3 and Fig. 10. It is obvious to see

that: a) Gabor magnitude feature performs better than SPLPQ

in FRGC ver2.0 Exp.4, that’s mainly because the images in

FRGC ver2.0 are of high resolution, little pose variance, and

relatively good alignment. Moreover, these form the exact fa-

vorite setting of Gabor magnitude feature (on the contrary,

SPLPQ performs better in more challenging settings, please

see Section 3); b) The complementarity between two features

indeed ensures the system performance increasing, e.g., in

ROC I with the transitional face model, Gabor magnitude

feature and SPLPQ phase feature have the VRs of 92.48%

and 88.18% at 0.1% FAR, respectively, whereas the fused
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approach achieves 94.14%. For more intuitive interpretation

of the complementarity between the two features, we select a

couple of testing pairs and show them in Fig. 11. Behind the

complementarity, we can easily notice that, compared with

Gabor magnitude feature, SPLPQ performs much remarkable

on blurred images, especially caused by centrally symmetric

blur [13] (e.g., blur caused by motion, out of focus, and at-

mospheric turbulence).

Fig. 10 ROC curves of the proposed approach on FRGC ver2.0 Exp.4. (a)
ROC I, (b) ROC II, and (c) ROC III, correspond to image pairs collected
within semester, within year, and between semesters, respectively

4.1.6 Evaluation of multiple face models

To validate the merits of multiple face models, we compare

the performance between the approaches with single face

model and the approach with multiple face models. These ex-

perimental results can be found in Table 3 and Fig. 10. As can

be seen from the table, the performance enhancement brought

by the multiple face models is significant, e.g., in ROC I

with Gabor magnitude feature, approaches based on single

face model get the VRs of 92.14%, 92.48%, and 89.89% at

0.1% FAR, respectively, whereas the multiple face models

based approach achieves 95.54%. Similar phenomenon be-

comes more significant with the SPLPQ phase feature, e.g.,

85.53%, 88.18%, and 84.00% for three single face models in

ROC I, and 93.50% for the multiple face models version. An-

other interesting observation is that approaches based on ex-

ternal face model which contains relative more holistic con-

textual information perform a little worse compared with the

approaches based on internal and transitional face models.

Maybe this is caused by the unified background in FRGC

ver2.0 which contains little identity relevant information.

Fig. 11 Illustration of the complementarity between Gabor magnitude fea-
ture and SPLPQ phase feature on FRGC ver2.0 Exp.4. (a) and (b) show sam-
ple pairs verified correctly by one feature, but verified incorrectly by the
other feature. (c) shows sample pairs that neither feature works on. Please
note that the two faces in each pair shown here come from the same subject,
and all the pairs shown in (a), (b) and (c) are verified correctly by the fused
approach

4.1.7 Comparison with other state-of-the-art approaches

After the evaluation of feature fusion and multiple face mod-

els, in this part we compare the final fusion approach with

the other state-of-the-art approaches. Table 3 summarizes

the performance of several representative state-of-the-art ap-

proaches that have been proposed since FRGC 2005, where

most of the results are cited from [10]. We can roughly group

these approaches into two parts, one contains the single fea-

ture based approaches, the other one contains the multiple

features fusion approaches. The proposed approach achieves

the impressive VRs of 96.20%, 95.76%, and 95.32% on ROC

I, ROC II, and ROC III, respectively, which outperform the
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Table 3 Comparative VRs at 0.1% FAR of state-of-the-art face recognition approaches on FRGC ver2.0 Exp.4. ROC I, ROC II, and ROC III, corresponding
to image pairs collected within semester, within year, and between semesters, respectively

Approach Feature ROC I ROC II ROC III

BEE baseline [27] Pixel 0.1336 0.1267 0.1186

KCFA [44] Pixel N/A N/A 0.57

R-WWC [45] Pixel ≈0.35 ≈0.35 ≈0.35

Extended GCID [38] Pixel 0.7890 0.7866 0.7826

YQCr [40] YQCr 0.6447 0.6489 0.6521

HVDA [39] YQCr 0.7865 0.7850 0.7824

KDCV [7] LBP N/A N/A 0.735

MFM-HFF [46] Fourier 0.7570 0.7506 0.7433

DIF [47] Gabor ≈0.72 ≈0.74 ≈0.76

LEC [4] Gabor N/A N/A 0.83

LGBP+LGXP [5] LGBP+LGXP 0.836 0.843 0.849

HEC [4] Gabor+Fourier N/A N/A 0.89

KDCV [7] Gabor+LBP N/A N/A 0.836

PS_MLPQ+PS_MLBP+KDA [8] MLPQ+MLBP 0.8292 0.8434 0.8572

Hybrid RCrQ [22] Gabor+LBP+DCT N/A N/A 0.924

RTF+RCF [10] RTF+RCF 0.9391 0.9355 0.9312

MultOSS [41] LBP+SIFT+TPLBP+FPLBP 0.8334 0.8252 0.7769

MLHR [42] Gabor+SPLPQ 0.9312 0.9174 0.9148

RSSM [43] Gabor+SPLPQ 0.9456 0.9337 0.9331

VGGFace [48] DCNN 0.9667 0.9616 0.9599

VGGFace (FRGC Finetune) [48] DCNN 0.9791 0.9778 0.9730

Gabor (Internal face) Gabor 0.9214 0.9221 0.9230

Gabor (Transitional face) Gabor 0.9248 0.9197 0.9135

Gabor (External face) Gabor 0.8989 0.8872 0.8744

SPLPQ (Internal face) SPLPQ 0.8553 0.8555 0.8549

SPLPQ (Transitional face) SPLPQ 0.8818 0.8704 0.8572

SPLPQ (External face) SPLPQ 0.8400 0.8153 0.7874

Gabor+LPQ (Internal face) Gabor+SPLPQ 0.9286 0.9286 0.9288

Gabor+LPQ (Transitional face) Gabor+SPLPQ 0.9414 0.9344 0.9267

Gabor+LPQ (External face) Gabor+SPLPQ 0.9146 0.8985 0.8819

Gabor (Multiple face models) Gabor 0.9554 0.9537 0.9518

SPLPQ (Multiple face models) SPLPQ 0.9350 0.9271 0.9182

Final fusion approach Gabor+SPLPQ 0.9620 0.9576 0.9532

other state-of-the-art approaches. In addition, we can reach

the following observations from the comparison: a) No sin-

gle feature based approach can surpass the VR of 85%, that’s

because single feature can only encode limited information of

the given face. As discussed in Section 2, Gabor magnitude

feature captures the structure information of the face, whereas

SPLPQ phase feature is more robust to blurred image by effi-

ciently encoding the facial texture. Therefore, it is reasonable

to combine different yet complementary features for more

effective face representation; b) The utilization of multiple

face models, e.g., Deng’s approach [10] and the proposed ap-

proach, can tremendously boost the system performance. Be-

cause holistic contextual information is a necessary supple-

ment to the intrinsic facial information; c) The proposed ap-

proach outperforms the other magnitude phase feature fusion

approach [5] which is based on local Gabor binary patterns

(LGBP) and local Gabor XOR patterns (LGXP); d) It is also

important to note that, although only gray-scale images are

used, the proposed approach outperforms all the color space

based approaches, e.g., [10, 22, 38–40].

Furthermore, we detailedly compare the proposed method

with three classic multi-feature fusion methods [41–43],

where [41] utilized the idea of one-shot similarity along with

multiple features (i.e., LBP, SIFT, TPLBP, and FPLBP) for

face representation (given two vectors, their one-shot simi-

larity score reflects the likelihood of each vector belonging

in the same class as the other vector and not in a class de-

fined by a fixed set of “negative” examples.), [42] showed a

new multiple feature learning algorithm MLHR with a sta-

tistical approach to exploit the structural information of both

the labeled and unlabeled data for multimedia content anal-

ysis, and [43] proposed a joint learning framework that in-
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tegrates semi-supervised learning, multi-feature learning and

the Riemannian metric (Reimannian metric is used to mea-

sure feature significance). Technically, we conduct compara-

tive experiments based on the source codes and defaulted pa-

rameters recommended by the authors ( [41,42] have released

codes, and we carefully implemented [43] by ourselves).

More specifically, we directly treat the proposed method as

six different features, i.e., combination of two features and

three face models, and feed the six feature sets into the com-

parative methods. For fair comparison, we upgrade the semi-

supervised model from [42, 43] to fully supervised version.

Comparison results can be found in Table 3, the proposed

method exhibits the competitiveness with its straight-forward

framework. Compared with the other two comparative meth-

ods, [43] performances best with the assumption that the in-

consistency can be evaluated by distances between different

graphs (here we implement the graph with subspace corre-

sponding to Grassmann manifold and covariance matrix cor-

responding to Riemannian manifold). If a graph constructed

from one feature type is comparatively farther away from

those constructed from other features, this feature is possibly

inconsistent with other features from the classification per-

spective.

At last, we compare the proposed method with state-of-

the-art deep learning based method. Here, we just consider a

classic off-the-shelf deep model, i.e., VGGFace [48], which is

an end-to-end convolutional neural network learning frame-

work designed for face recognition. To conduct comparison,

we design two versions of VGGFace, i.e., using the official

provided model or fine-tuned model with target database. For

the first version, we directly utilize the 4,096-dim fc7 fea-

ture as final representation, and for the fine-tuned version, we

first fine-tune the network with FGRC ver2.0 Exp.4’s 12,776

training images of 222 subjects (40 epoch) based on the pro-

vided model, and then extract the same 4,096-dim fc7 feature.

VVGFace did exhibited its competitiveness in both versions.

We believe such powerful performance should mainly thank

to the large-scale data for deep network training, e.g., about

2.6 million images spanning more than 2,600 identities are

used for VGGFace training.

4.2 Evaluation of proposed approach on LFW

In the last sub-section, we conduct evaluation of the pro-

posed approach on FRGC ver2.0 Exp.4. To further validate

the approach effectiveness, especially the roles of feature fu-

sion and multiple face models, we evaluate the proposed ap-

proach on two wild face databases, i.e., LFW and CFW-p.

Moreover, these two databases correspond to two classifica-

tion scenarios, where LFW for face verification and CFW-p

for face identification. Please kindly note that for better vali-

date the generality of the proposed approach, we just use the

exact same parameters with FRGC ver2.0 on the following

two databases.

4.2.1 Database and experimental setup

Labeled faces in the wild (LFW) [28] is an image database

for unconstrained face verification and it is quite different

from FRGC ver2.0. Specifically, FRGC ver2.0 is designed

to study the effect of richer, new data types on the face recog-

nition problem, thus including high resolution data, image

sequences, and even 3D scans of each subject. Each of these

data types is potentially more informative than the simple,

moderate resolution images. In contrast, LFW is designed to

help study the face recognition problem using previously ex-

isting real world images, that is, images are not taken for the

special purpose of face recognition by machine. Figure 12

shows some examples of LFW.

Fig. 12 Example images of three subjects from LFW (Large intra-class
variations in lighting, expression, head pose, age, clothing, hairstyles, back-
ground, and camera quality can be found here). (a) Arnold Schwarzenegger;
(b) Bill Clinton; (c) Serena Williams

Large variations in lighting, head pose, hairstyles, age, ex-

pression, background, race, ethnicity, gender, clothing, cam-

era quality, focus, color saturation, and other parameters can

be found. LFW contains 13,233 face images of 5,749 sub-

jects collected from the web. Among these, 1,680 subjects

have two or more distinct images, the remaining 4,069 sub-

jects have only one image in the database. Two protocols

are considered in LFW, the restricted one limits the infor-

mation available for training to the same/different labels in

the training splits; the unrestricted one, on the other hand,

allows training methods access to subject identity labels. As

the training of FDA needs identity labels, here we conduct the

experiment following the unrestricted protocol in form of 10-

fold cross validation which splits the data set into 10 subsets

with each containing 300 intra-class pairs and 300 inter-class

pairs.
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4.2.2 Experimental results and analysis

Table 4 summarizes the performance of the proposed ap-

proach, several representative approaches [41, 49–51], and

multiple feature fusion methods [42, 43] on LFW. Besides,

recently deep learning based methods [48, 52–54] start to

show their competitiveness on LFW, especially with large-

scale labeled outside training data. Thus, we also take such

methods into comparison. For fair comparison, all the meth-

ods are tested under the unrestricted protocol. As for the us-

age of labeled outside training data, we mark this information

in the second column of Table 4. The performance of listed

methods are directly cited from the original literatures or

the official LFW homepage. For better validating the method

generalizability, we fix all the parameters to stay the same

with FRGC ver2.0. Also, we show the proposed approach

in similar ways as on FRGC ver2.0, i.e., single feature with

single face model, single feature with multiple face models,

multiple features with single face model, and multiple fea-

tures with multiple face models. It can be seen that the pro-

posed approach achieves comparable performance with the

other state-of-the-art approaches (not including deep learning

based ones). We could find similar observations from Table 4

with the ones on FRGC ver2.0 that the combination of Ga-

bor magnitude feature and SPLPQ phase feature plays a key

role for more effective face representation (for interpreting

the complementarity of the two features more intuitively, we

select a couple of testing pairs and show them in Fig. 13), and

multiple face models are reliable engineering techniques for

Table 4 Experimental results of the proposed approach and several typical approaches on LFW, where the performance of listed methods are directly cited
from the original literatures or the official LFW homepage

Approach Labeled outside data Feature Result

LBP PLDA, aligned [49] LFW only LBP 0.8733 ± 0.0055

Combined multishot, aligned [41] LFW only 8 features 0.8950 ± 0.0051

MLHR [42] LFW Only Gabor+SPLPQ 0.8683 ± 0.0083

RSSM [43] LFW Only Gabor+SPLPQ 0.8750 ± 0.0069

Tom-vs-Pete [50] Columbia University T-P classifier scores 0.9310 ± 0.0135

HighDimLBP [51] WDRef High-Dim LBP 0.9517 ± 0.0113

DeepFace-ensemble [52] FaceBook Private DCNN feature 0.9735 ± 0.0025

DeepID [53] CelebFaces DCNN feature 0.9745 ± 0.0026

VGGFace [48] VGG Face DCNN feature 0.9895 ± - - - - -

FaceNet [54] Google Private DCNN feature 0.9963 ± 0.0009

Gabor (Internal face) LFW Only Gabor 0.8433 ± 0.0117

Gabor (Transitional face) LFW Only Gabor 0.8550 ± 0.0098

Gabor (External face) LFW Only Gabor 0.8617 ± 0.0126

SPLPQ (Internal face) LFW Only SPLPQ 0.8567 ± 0.0085

SPLPQ (Transitional face) LFW Only SPLPQ 0.8600 ± 0.0097

SPLPQ (External face) LFW Only SPLPQ 0.8683 ± 0.0072

Gabor+LPQ (Internal face) LFW Only Gabor+SPLPQ 0.8667 ± 0.0059

Gabor+LPQ (Transitional face) LFW Only Gabor+SPLPQ 0.8717 ± 0.0068

Gabor+LPQ (External face) LFW Only Gabor+SPLPQ 0.8783 ± 0.0044

Gabor (Multiple face models) LFW Only Gabor 0.8733 ± 0.0053

SPLPQ (Multiple face models) LFW Only SPLPQ 0.8817 ± 0.0048

Gabor (Internal face) Webface Gabor 0.8933 ± 0.0037

Gabor (Transitional face) Webface Gabor 0.8967 ± 0.0062

Gabor (External face) Webface Gabor 0.9017 ± 0.0039

SPLPQ (Internal face) Webface SPLPQ 0.9000 ± 0.0042

SPLPQ (Transitional face) Webface SPLPQ 0.9050 ± 0.0045

SPLPQ (External face) Webface SPLPQ 0.9117 ± 0.0071

Gabor+LPQ (Internal face) Webface Gabor+SPLPQ 0.9133 ± 0.0029

Gabor+LPQ (Transitional face) Webface Gabor+SPLPQ 0.9183 ± 0.0031

Gabor+LPQ (External face) Webface Gabor+SPLPQ 0.9233 ± 0.0028

Gabor (Multiple face models) Webface Gabor 0.9150 ± 0.0019

SPLPQ (Multiple face models) Webface SPLPQ 0.9317 ± 0.0034

Final fusion approach I LFW only Gabor+SPLPQ 0.8933 ± 0.0047

Final fusion approach II Webface Gabor+SPLPQ 0.9450 ± 0.0028
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Fig. 13 Illustration of the complementarity between Gabor magnitude fea-
ture and SPLPQ phase feature on LFW. (a) and (b) show sample pairs veri-
fied correctly by one feature, but verified incorrectly by the other feature. (c)
shows sample pairs that neither feature works on. Please note that the two
faces in each pair shown here come from the same subject, and all the pairs
shown in (a), (b) and (c) are verified correctly by the fused approach

system performance boosting. Besides, we find that in LFW,

SPLPQ phase feature performs a little better than Gabor mag-

nitude feature. That is mainly because faces in LFW are

not with good alignment compared with FRGC ver2.0, and

SPLPQ as a histogram based descriptor is naturally robust to

slight spatial misalignment.

As for the deep learning based methods, they did exhibited

their competitiveness. Most of such methods require large-

scale labeled outside training data, e.g., DeepFace [52] re-

lies on a Facebook private large database with 4.4 million la-

beled faces from 4,030 people each with 800 to 1,200 faces,

FaceNet [54] relies on a Google private database with 100–

200 million labeled faces from about 8 million different iden-

tities. To compare with such methods, we have to fully take

the advantage of outside training data. More specifically, we

choose Webface [55] which is regarded as the largest public

available database containing 494,414 faces of 10,595 sub-

jects without overlapping with LFW. Technically, we utilize

Webface to train PCA and FDA models, and 3,500 dim are

kept for final matching. Although the performance still no

better than deep learning based methods, significant improve-

ment can be found from 0.8933 (no outside data) to 0.9450

(with Webface). This is mainly because each subject in Web-

face has about 50 faces which offer a relatively more accurate

estimation of within-class scatter compared with LFW itself

in which each subject has only two faces in average.

4.3 Evaluation of proposed approach on CFW-p

Section 1 shows the evaluation of the proposed approach un-

der face verification scenario. Since face identification is also

an important classification scenario that should be taken into

account, in this sub-section, we introduce a very large-scale

database along with an identification protocol based on it.

4.3.1 Database and experimental setup

Celebrity Faces on the Web (CFW) [29] is a very large-scale

database of celebrity face images collected from the web by

Microsoft Research Asia, and the released version contains

202,792 faces of 1,583 subjects. Each subject in CFW has

more distinctive images (average 128 images for one subject),

and these images include more complex, real, and challeng-

ing variations (see Fig. 14). However, the officially provided

identity labels in CFW cannot be directly used as ground

truth for identification, because they are generated by an au-

tomatic face annotation system proposed in [29] which would

inevitably involve some mistakes. To fix this problem, for ev-

ery image we invite three volunteers to check whether the

claimed label is correct/incorrect or uncertain. Only images

with three positive confirmations, i.e., all the three volunteers

agree with the correctness of the claimed label, are preserved

(153,461 faces of 1,520 subjects are preserved after the above

purification, and the purified database is named CFW-p1)).

When volunteers encounter an unknown celebrity, they are

required to look at top Google and Bing image search results

to get familiar with the visual appearance of the celebrity.

In addition, the three volunteers are also required to anno-

tate five main facial landmarks for each image, i.e., geomet-

ric centers of two eyes, tip of nose, and two corners of the

mouth.

Fig. 14 Example images of five subjects from CFW-p. (Compared with
FRGC v2.0, CFW-p is collected from more general web images including
an large amount of user edited pictures, e.g., comic portraits, oil paintings,
watercolor paintings, sketches, and sculptures) (a) Abraham Lincoln; (b) An-
gelina Jolie; (c) Barack Obama; (d) Van Beethoven

1) We will release the purified CFW, i.e., CFW-p, with 153,461 faces of 1,520 subjects along with corresponding five landmarks’ coordinates. Please feel free
to send email to the authors
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As FRGC ver2.0 is designed for the face verification sce-

nario, we design an identification protocol on CFW-p to

further validate the effectiveness of the proposed approach.

Specifically, we randomly select 520 subjects to form the

training set which contains 54,863 images, and do 10-fold

cross validation on the remaining 98,598 images of 1,000

subjects. For each fold, only one image per subject is ran-

domly selected as gallery. As for measurement, we ask each

experimenter to report the estimated mean accuracy and the

standard error of the mean. In particular, the estimated
mean accuracy is given by

μ̂ =
1

10

10∑

i=1

pi, (27)

where pi is the percentage of correct classifications in the ith

fold. The standard error of the mean is given as

SE =
σ̂√
10
, (28)

where σ̂ is the estimate of the standard deviation, given by

σ̂ =

√
√
√

1
9

10∑

i=1

(pi − μ̂)2. (29)

4.3.2 Experimental results and analysis

In this part, we include several representative methods [49–

51] in LFW, multiple feature fusion methods [41–43], and

deep learning based method [48]. More specifically, we take

the source codes of [41, 42] and [48], and employ the de-

faulted parameters suggested by the authors. For the other

comparative methods, we carefully implement them [43, 49–

51] by ourselves. Table 3 summarizes the performance of the

proposed approach on CFW-p. Like Table 3, we evaluate the

proposed approach in several ways for better validation. It

can be seen that the proposed approach achieves only about

15% of correct identification accuracy under the challeng-

ing protocol, where the probe set is extremely large, and the

gallery set is relatively small, i.e., only one image per subject.

From Table 3, we can again find the similar observations with

FRGC ver2.0 and LFW that the combination of Gabor mag-

nitude feature and SPLPQ phase feature indeed plays a key

role for more effective face representation (for more intuitive

interpretation, please refer to Fig. 15), and multiple face mod-

els again prove themselves to be reliable tools for system per-

formance boosting. Another point to note is that the external

face model starts to show its advantage against the internal

face model in CFW-p, and the reason behind this observa-

tion is that, compared with the unified background in FRGC

ver2.0, background in CFW-p contains relative abundant in-

formation which has high correlation with identity. Again,

deep learning based method achieves the best performance

among all the listed methods, especially with target data for

fine tuning. However, it may not be fair enough to compare

VGGFace with the proposed method. Because, a good deep

model usually relies on a large-scale training set (2.6 million

Table 5 Experimental results of the proposed approach on CFW-p (esti-
mated mean accuracy and standard error of the mean)

Approach Feature Result

LBP PLDA [49] LBP 0.0733 ± 0.0025

Tom-vs-Pete [50] T-P scores 0.1087 ± 0.0019

HighDimLBP [51] High-Dim LBP 0.1296 ± 0.0017

MultOSS [41] 4 features 0.0798 ± 0.0031

MLHR [42] Gabor+SPLPQ 0.1361 ± 0.0029

RSSM [43] Gabor+SPLPQ 0.1437 ± 0.0023

VGGFace [48] DCNN feature 0.1927 ± 0.0015

VGGFace (CFW Finetune) [48] DCNN feature 0.2457 ± 0.0018

Gabor (Internal face) Gabor 0.0926 ± 0.0014

Gabor (Transitional face) Gabor 0.1060 ± 0.0014

Gabor (External face) Gabor 0.1089 ± 0.0015

SPLPQ (Internal face) SPLPQ 0.1205 ± 0.0019

SPLPQ (Transitional face) SPLPQ 0.1358 ± 0.0021

SPLPQ (External face) SPLPQ 0.1279 ± 0.0018

Gabor+LPQ (Internal face) Gabor+SPLPQ 0.1212 ± 0.0018

Gabor+LPQ (Transitional face) Gabor+SPLPQ 0.1386 ± 0.0021

Gabor+LPQ (External face) Gabor+SPLPQ 0.1390 ± 0.0018

Gabor (Multiple face models) Gabor 0.1199 ± 0.0017

SPLPQ (Multiple face models) SPLPQ 0.1475 ± 0.0022

Final fusion approach Gabor+SPLPQ 0.1476 ± 0.0021

Fig. 15 Illustration of the complementarity between Gabor magnitude fea-
ture and SPLPQ phase feature on CFW-p. (a) and (b) show sample pairs
recognized correctly by one feature, but recognized incorrectly by the other
feature. (c) shows sample pairs that neither feature works on. Please note that
the two faces in each pair shown here come from the same subject, where the
left one is gallery, the right one is probe, and all the pairs shown in (a), (b)
and (c) are recognized correctly by the fused approach
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faces) which may has a considerable proportion of overlap

with test database.

5 Conclusion and discussion

Inspired by the complementarity between magnitude and

phase features and the biological cognitive mechanism of

judging identity, a multiple face models based feature fu-

sion approach was proposed to solve the uncontrolled face

recognition problem. In the proposed approach, the magni-

tude feature is extracted by Gabor wavelets transform, and

the phase feature is extracted by spatial pyramid based local

phase quantization (SPLPQ), the fusion of the two features is

embedded into a multiple face models framework which con-

sists of several face images with the same size but very differ-

ent scopes of visual facial region. To reduce the high dimen-

sionality of the features and increase discriminability, block-

wise fisher discriminant analysis (BFDA) is utilized in this

paper. The proposed fusion approach is extensively evaluated

and compared with previous approaches on FRGC ver2.0,

LFW, and CFW-p, and the experimental results indicate that

the proposed approach achieves better or comparable result

than the best known ones. In particular, on FRGC ver2.0, the

proposed approach achieved impressive 96.20%, 95.76% and

95.32% VRs (when FAR=0.1%) under ROC I/II/III of Exp.4

respectively, impressively surpassing all the best known re-

sults.

To summarize the proposed approach, we can attribute its

favorable performance to the following aspects, which should

be valuable to researchers in this area. First, the combination

of magnitude and phase features has a key role. Experimental

results confirm that they are indeed complementary for dis-

tinguishing faces, i.e., Gabor magnitude feature captures the

structure information of the face, whereas SPLPQ phase fea-

ture is more robust to misalignment and blurred image by ef-

ficiently encoding the facial texture. Secondly, multiple face

models are a reliable engineering technique for system per-

formance boosting because they characterize the face in dif-

ferent granularity levels, i.e., facial region and resolution. A

suggestion for selecting them is always attempt to make the

selected face models as separate from each other as possible.

Thirdly, spatial pyramid is an effective method to extend the

histogram based features by preserving more information.

For future work, the current implementation of multiple

face models is not efficient, i.e., there is significant redun-

dancy between each face model. That is, the time consump-

tion of the proposed approach is three times as great as the

approaches based on a single face model. The external face

model contains the maximum scope of visual facial region

yet has the lowest facial resolution, whereas the internal face

model is with the reverse setting. Therefore, we believe that

there exists a smart approach to only use one integrated face

model with the maximum scope of visual facial region such

as the external face model, and at the same time has the high-

est facial resolution such as the internal face model. Further,

we will test statistic weighting methods to fuse different fea-

tures.
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